
INTOS: Persistent Embedded OS and Language Support
for Multi-threaded Intermittent Computing

Yilun Wu* Byounguk Min† Mohannad Ismail‡

Wenjie Xiong‡ Changhee Jung† Dongyoon Lee*

* ‡ †

Background: Intermittent Computing

Energy harvesting system

(e.g. env. sensors, nano satellites…)

Volatile Memory

(e.g., SRAM)Regs

Non-Volatile Memory

(e.g., FRAM)

MCU

CapacitorHarvester

fn task_recognize(model: Model) {
 let q = sys_create_queue();
 let stats = sys_alloc();

while(...) {
 let reading =sys_read(SENSOR);
 let window = [0; 3]
 init_window(&reading)
 transform(&mut window)

 let feature = featurize(&window)
 let class = classify(&feature,

&model)
 stats[class] += 1

 sys_queue_send(q, class, TIME_OUT);
 }

}

Crash

Crash

Intermittent program execution

On Crash

=> Need crash consistency

After recharging , system reboots

+ states are lostRegs SRAM

No Embedded OS for Intermittent Computing

• Embedded OS

e.g., threads, queues, semaphores, events, software timers

+ Improved MCU utilization => better energy utilization

+ Improved HW multiplexing

+ Easier programming for async multi-tasking

• Existing embedded OSes

e.g., FreeRTOS, Tock

⎼ NOT crash safe

• Idempotent processing: e.g., Ratchet [OSDI’16]

+ Transparent

⎼ NVM only. slow. less energy efficient

• Micro-continuation: e.g., Immortal Thread [OSDI’22]

+ (Almost) transparent. some threading support

⎼ NVM only. slow. less energy efficient

• Manual task-decomposition: e.g., Alpaca [OOPSLA’17]

+ Good performance

⎻ Huge manual efforts

Prior Crash Consistency Solutions for Embedded OS?

Overview of IntOS

• Threads (multithreading)

• OS

• queues

• events

• semaphores, and more

• HW

• volatile registers

• volatile memory

• non-volatile memory

• Crash Consistency

• Transactions

• Replay-and-bypass

L
an

g
u
ag

e

Thread Transaction (TX1) TX2

…syscall

Undo-logging TXsReplay-and-bypass

Crash Consistency

Volatile Memory

(eg, stack, local var.)

Non-volatile Memory

(eg, persistent objs.)Regs

MCU

H
W

O
S

Priority-based

preemptive

scheduler

Semaphores

Timers

Events

Mem. Alloc.

Queues

TX

Volatile objs Persistent objs

Regs SRAM

NVM

Transactions

fn task_recognize(model: Model) {
 let q,stats = transaction::run(|j,t|
 q = sys_create_queue(Q_SZ);
 let stats = PBox::new(…);

 return (q,stats);
);

 // while loop removed for simplicity
 transaction::run(|j,t| {
 let reading = read(SENSOR);
 let window = [0; 3]
 init_window(&reading)
 let feature = featurize(&window)
 let class = classify(&feature, &model)

 // automatic Undo-logging
 let stats_ref = stats.as_mut(j);
 *stats_ref[class] += 1
 sys_queue_send(q, class, TIME_OUT);
 });

}

Thread 1 TX2

TX3 TX4

TX1 syscall

Kernel

Example task (thread)

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

A syscall “sys_queue_send” contains

transactions (TX3 and TX4) in the kernel

Time

TX1

TX2

A thread includes transactions (TX1 and TX2)

for persistent objects.

Replay-and-Bypass (single-thread)

Thread 1 TX2TX1

TX3

syscall

Kernel

replay2

State s1 sc

crash

s0

undo1

4 syscall bypass

resume

bypass3

stats,q

User TX Replay Table

1 stats, q 1 0xABCD

2 0x0

Kernel TX Replay Table Syscall Replay Table

1 0x0

TX4

ID Return Val ID Return Val ID Return Val

Crash Consistency Support for Multithreading

• Kernel maintains multiple ready-lists and wait-lists

 Uses roll-forward crash consistency solution for efficiency (see §7 in paper

for detail)

• Tasks interact through shared kernel objects (e.g., queue, semaphores)

 Uses kernel-level transactions for crash consistency

 Recovers the interrupted kernel transaction before resuming a user thread

• Tasks have different priorities

 Recovers the ready task with highest priority first

 Lazily recovers other tasks (when they are scheduled later)

Multi-thread Crash Consistency

Thread 1 TX2TX1 preempted

Kernel

Thread 2

high priority

low priority

TX5waiting crash

replay

Task 2 first

2

undo1

replay

Task 1
4

Q updates

Message Q

TX3 TX4

undo (when scheduled)3

Th2Wait List:

Ready List: Th1
Kernel

Programming Model (enforced by Rust)

fn task_recognize(model: Model) {
 let q,stats = transaction::run(|j,t|
 q = sys_create_queue(Q_SZ);
 let stats = PBox::new(…);

 return (q,stats);
);

 transaction::run(|j,t| {
 let reading = read(SENSOR);
 let window = [0; 3]
 init_window(&reading)
 let feature = featurize(&window)
 let class = classify(&feature, &model)
 let stats_ref = stats.as_mut(j);
 *stats_ref[class] += 1
 sys_queue_send(q, class, TIME_OUT);
 });

}

Example program

A persistent object has the Pbox<T> type

A reference cannot be returned from a

transaction

A persistent object can only be

dereferenced within a transaction

Evaluation Methodology

• Benchmarks

• Seven micro-benchmark applications (1- 4 tasks per app)

• Activity Recognition, KV Store, Sensing, Multi-layer Perception, etc.

• Four RIOTBench applications [CCPE’17] (> 4 tasks per app)

• IOT data stream processing: e.g., stats, prediction, train, etc.

• Baseline

• Ratchet [OSDI’16] partitions and transforms a program into idempotent

regions for crash consistency.

• Employs FRAM (NVM) only

• Testbed

• MSP430FR5994(MSP FRAM+SRAM)

• Apollo 4 Blue Plus (ARM, Hybrid Mem)

Evaluation with Power Failures

Micro-benchmark RIOTBench

Conclusion

• Functionality: IntOS is the first embedded (best-effort real time) OS that is

crash safe and supports priority-based preemptive multithreading in

intermittent computing setting.

• Efficiency: IntOS can make progress under frequent power failures at lower

runtime and energy overheads than prior works.

• Safety: IntOS ensures whole system consistency including both volatile and

non-volatile system states using Rust-based type system.

	Slide 1: INTOS: Persistent Embedded OS and Language Support for Multi-threaded Intermittent Computing
	Slide 2: Background: Intermittent Computing
	Slide 3: No Embedded OS for Intermittent Computing
	Slide 4
	Slide 5: Overview of IntOS
	Slide 6: Transactions
	Slide 7: Replay-and-Bypass (single-thread)
	Slide 8: Crash Consistency Support for Multithreading
	Slide 9: Multi-thread Crash Consistency
	Slide 10: Programming Model (enforced by Rust)
	Slide 11: Evaluation Methodology
	Slide 12: Evaluation with Power Failures
	Slide 13: Conclusion

