DEVFUZZ: Automatic Device Model-Guided
Device Driver Fuzzing

Yilun Wu® Tong Zhang® Changhee Jung* Dongyoon Lee”

» QstonyBrok . SAMSUNG : 75 PURDUE

University

Device Driver Security

Two Interfaces Threat Model

Application « An attacker can plug in a malicious
@ @ System Cal device (e.g. USB hack stick)

oS « Adevice can feed malformed inputs
to exploit security vulnerabilities in a
device driver (e.g. buffer overflows)

Device drivers
run in privileged mode %'I%‘

&
o
3

Real World Examples

HOW TO JAILBREAK THE PS4 ON FW 9.00 WITH A USB DRIVE

PS4 Jailbreak 9.00

You will need a USB drive and it needs to be formated to exfat. Next, you'll need the image to burn to the

USB drive at pOOBS github it will be called exfathax.img. I put the download below.

New Xbox 360 hacked to play
'backup’ discs, public release
underway? (video)

Challenge 1: Large Device Input Space

Physical Memory /O
Address Space Address Space

CPU
PCIl Memory <@ MMIO> < @ PO > PCI_DATA
Range PCI_ADDR

LD rl Mem[X]
ST Mem[Y] 2 Hub OUT Port[B] r2

Y 4‘)\ IN rl Port[A]
o
S

DMA Buffer <€) DMA > PCI device

@ Memory Mapped 10 (MMIO)

@ Port 10 (P1O) | Testing all possible input is
©® Direct Memory Access (DMA) unscalable and ineffective

@ Interrupt (IRQ)

Challenge 2: Dynamic Probing

« Many bus architectures (e.g., PCle, USB) allow users to plug-in new devices.
« OS pairs a driver with a device and initialize it using a probing function.

int pcnet32 probe(struct pci_dev * pdev) {

1

2 "

3 void *ioaddr = pci_resource_start(pdev, 0);
4 int err = -ENODEV;

5 int chip version;

6 if (ioread(ioaddr+0x10) != 4 ||
7

8

Passing probing conditions

ioread(ioaddr+9x12) & 0xA) {

eturn err. require device-specific input
9 } -
10 chip version = ioread(ioaddr+9x10) | . .
11 ioread(ioaddr+0x10) << 16); Can we test device drivers
12 if (chip_version != OxABCD) { = without actual devices?
13 return err;
14 }
15 -
16 return 0;
17 }

pcnet32 network device driver probing function

Prior Work: Testing Device Drivers

Testing with real hardware
* e.g., PeriScope [NDSS'19]
« Hardware may not be readily available

Symbolic/Concolic execution
* e.g., SymDrive [0SDI'12], DriFuzz [SEC'22]
* Slow

Manual software model (for probing) + Fuzzing
* e.g., USBFuzz [SEC’ 20]
« Unscalable. Error-prone

Static analysis (for probing) + Fuzzing
* e.g., PrintFuzz [ISSTA22]

« Low success rate for probing due to imprecise static analysis

Our Approach

Goals: Testing device drivers
« without actual devices
 without manual modeling
 without (input space) state explosion

DevFuzz Device Models
symbolic | Probe
execution Model /T
Driver MMIO/PIO
program //' Model
analysis

Step 1: automatic model generation

Using Symbolic Execution for Probe Model

Built on S?E [ASPLOS 2011]
« QEMU for emulation
- KLEE for symbolic execution

Symbolic Execution
* Run probing functions with symbolic MMIO/PIO address space regions

« Successful probing
« Use the SMT solver to solve the constraint to get concretized values

« Failed probing

« Terminate the case and explore alternative paths

“Concretized” Probe Model
 Allow DevFuzz to pass (complex) probing path constraints

Probe Model Example

1 int pcnet32_probe(struct pci_dev * pdev) { MMIO Address Space

2 -

3 void *ioaddr = pci_resource_start(pdev, 0); Registers /\Cﬂ’[1

4 int err = -ENODEV;

5 int chip_version; 0x10

6 if (ioread(ioaddr+0x10) != 4 Ox12

7 ioread(ioaddr+0x12) & 0xA) { > >

8 return err; CEa0 /O\Cnt S AB
O/

9 }

10 chip_version = ioread(ioaddr+9x10) |

11 ioread(ioaddr+0x10) << 16); cnt=1

12 if (chip_version != @xABCD) { ’@ ’@_

13 return err; \T/

14 }

15

e return 0; Probe Model /,

17 }

_ _ _ _ A state machine of
pcnet32 network device driver probing function device register values

Using Program Analysis for MMIO/PIO Models
LLVM-based Static Program Analysis

1 . _
2 csro =llg—>a—>r‘ead csr|(ioaddr, [cSRe); @ O wrapper anaIyS|S
3 while ((csro & ,0x8f00) |&& --boguscnt >= 0) i
4 { ' @ |O address analysis
: - _
° R ® 10 value flow analysis
7 lp->a->write csr| (ioaddr, CSR@]
8 csrd & ~0x004f) 4| _
9 if [(csre == 6x4000) { Registers
10 _
11 } 0x10 Value Constraints
12 if [(csre == ex10ee)] { 0x12 magic | value | relevant
12) value | range bits
15 csr@ =|1lp->a->read_csr| (ioaddr, CSR@I; 0x20 L OXfiff ! - 0x8f0Q.
16 } -7
17 .. MMIO Model

pcnet32 network device driver interrupt handler Guides fuzzing inputs

And More ...

DMA Model

* DevFuzz uses dynamic/static program analyses
 DMA buffer address/shape analysis

IRQ

« Simple model
» Generate IRQs using a timer

Model Generality and Reusability

* The generated Probe, MMIO, PIO Models reflect device-specific properties

 The models generated from one OS (Linux) can be reused to test device
drivers of another OS (FreeBSD or Windows)

Evaluation Summary

« Large-scale security evaluation
 Tested 150 Linux drivers
 Reused device models to test 25 FreeBSD and 16 Windows drivers

« Small-scale code coverage evaluation
» 17 network device drivers
« Compared with prior work: PrintFuzz [ISSTA'22] and DriFuzz [SEC’22]

« Compared with manually-developed QEMU device models (not shown in
this talk)

Security Evaluation

_ R

Linux
FreeBSD 25 14 38 2
Windows 16 8 1 0
All 191 134 12 41

 For Linux: 75% (112/150) were successfully probed via symbolic execution
« Some unsupported features (e.g., IRQ during symbolic execution)
« Complex path constraints (e.g., checksum)

* For FreeBSD/Windows: About half Probe Models were reusable
« 72 Bugs (1 CVE) were reported (including FreeBSD/Windows cases)
* 56% (41/72) were patched to the mainstream

Coverage Comparison with Prior Works

* PrintFuzz [ISSTA22] uses | T C rimtFuzs
static analysis to pass | EEE Drifuzz
probing path constraints, 0. ; DevFuzz(Ours)
followed by fuzzing

)

w
o
1

* DriFuzz [SEC’22] uses
concolic execution

Coverage (%

N
o
1

- DevFuzz achieves better to-
 Successful probing rate
» Code coverage

0

Geometric
Mean

Conclusion

* DevFuzz leverages symbolic execution, program analysis, and fuzzing to
enable testing device drivers

 without actual devices
 without manual device modeling
 without (input space) state explosion

* DevFuzz uncovered 72 bugs (41 patched)
» DevFuzz achieved higher code coverage than prior works

« DevFuzz were able to test a large set of device drivers without devices across
three different OSes (Linux, FreeBSD, and Windows

Q&A

	Slide 1: DEVFUZZ: Automatic Device Model-Guided Device Driver Fuzzing
	Slide 2: Device Driver Security
	Slide 3: Real World Examples
	Slide 4: Challenge 1: Large Device Input Space
	Slide 5: Challenge 2: Dynamic Probing
	Slide 6: Prior Work: Testing Device Drivers
	Slide 7: Our Approach
	Slide 8: Using Symbolic Execution for Probe Model
	Slide 9: Probe Model Example
	Slide 10: Using Program Analysis for MMIO/PIO Models
	Slide 11: And More …
	Slide 12: Evaluation Summary
	Slide 13: Security Evaluation
	Slide 14: Coverage Comparison with Prior Works
	Slide 15: Conclusion
	Slide 16: Q&A

