
DEVFUZZ: Automatic Device Model-Guided
Device Driver Fuzzing

Yilun Wu* Tong Zhang+ Changhee Jung‡ Dongyoon Lee*

* + ‡

Device Driver Security

Application

Device

OS

Device drivers

run in privileged mode

Threat Model

• An attacker can plug in a malicious

device (e.g. USB hack stick)

• A device can feed malformed inputs

to exploit security vulnerabilities in a

device driver (e.g. buffer overflows)

Two Interfaces

System Call1

I/O2

Real World Examples

Challenge 1: Large Device Input Space

CPU

Hub

DMA Buffer

I/O

Address Space

…

PCI_DATA

PCI_ADDR

…

2 PIO

4
IR

Q

PCI device

IN r1 Port[A]

OUT Port[B] r2

3 DMA

Driver

Physical Memory

Address Space

…

PCI Memory

Range

…

1 MMIO

LD r1 Mem[X]

ST Mem[Y] r2

Memory Mapped IO (MMIO)1

Port IO (PIO)2

Direct Memory Access (DMA)3

Interrupt (IRQ)4

Testing all possible input is

unscalable and ineffective

Challenge 2: Dynamic Probing

• Many bus architectures (e.g., PCIe, USB) allow users to plug-in new devices.

• OS pairs a driver with a device and initialize it using a probing function.

int pcnet32_probe(struct pci_dev * pdev) {
 …
 void *ioaddr = pci_resource_start(pdev, 0);
 int err = -ENODEV;
 int chip_version;
 if (ioread(ioaddr+0x10) != 4 ||
 ioread(ioaddr+0x12) & 0xA) {
 return err;
 }
 chip_version = ioread(ioaddr+0x10) |
 ioread(ioaddr+0x10) << 16);
 if (chip_version != 0xABCD) {
 return err;
 }
 …
 return 0;
}

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

pcnet32 network device driver probing function

Passing probing conditions

require device-specific input

Can we test device drivers

without actual devices?

Prior Work: Testing Device Drivers

Testing with real hardware

• e.g., PeriScope [NDSS’19]

• Hardware may not be readily available

Symbolic/Concolic execution

• e.g., SymDrive [OSDI’12], DriFuzz [SEC’22]

• Slow

Manual software model (for probing) + Fuzzing

• e.g., USBFuzz [SEC’ 20]

• Unscalable. Error-prone

Static analysis (for probing) + Fuzzing

• e.g., PrIntFuzz [ISSTA’22]

• Low success rate for probing due to imprecise static analysis

Our Approach

Goals: Testing device drivers

• without actual devices

• without manual modeling

• without (input space) state explosion

DevFuzz

MMIO/PIO

Model

DMA

Model

Probe

Model

symbolic

execution

program

analysis

Device Models

Driver +

IRQ

Driver

AFL

(coverage-guided)

(model-guided)

Step 1: automatic model generation Step 2: model-guided fuzzing

test input

Using Symbolic Execution for Probe Model

Built on S2E [ASPLOS 2011]

• QEMU for emulation

• KLEE for symbolic execution

Symbolic Execution

• Run probing functions with symbolic MMIO/PIO address space regions

• Successful probing
• Use the SMT solver to solve the constraint to get concretized values

• Failed probing
• Terminate the case and explore alternative paths

“Concretized” Probe Model

• Allow DevFuzz to pass (complex) probing path constraints

…

0

Probe Model Example

int pcnet32_probe(struct pci_dev * pdev) {
 …
 void *ioaddr = pci_resource_start(pdev, 0);
 int err = -ENODEV;
 int chip_version;
 if (ioread(ioaddr+0x10) != 4 ||
 ioread(ioaddr+0x12) & 0xA) {
 return err;
 }
 chip_version = ioread(ioaddr+0x10) |
 ioread(ioaddr+0x10) << 16);
 if (chip_version != 0xABCD) {
 return err;
 }
 …
 return 0;
}

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

pcnet32 network device driver probing function

Registers

MMIO Address Space

0x10
0x12

4 CD

AB

cnt=1 cnt=2

cnt>3cnt>30

A
cnt=1

Probe Model

cnt=3

A state machine of

device register values

Using Program Analysis for MMIO/PIO Models

LLVM-based Static Program Analysis

…
csr0 = lp->a->read_csr (ioaddr, CSR0);
while ((csr0 & 0x8f00) && --boguscnt >= 0)
{
 if (csr0 == 0xffff)
 break;
 lp->a->write_csr (ioaddr, CSR0,
 csr0 & ~0x004f);
 if (csr0 == 0x4000) {
 …
 }
 if (csr0 == 0x1000) {
 …
 }
 csr0 = lp->a->read_csr (ioaddr, CSR0);
}
…

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

pcnet32 network device driver interrupt handler

…

Registers

0x10
0x12

IO wrapper analysis1

IO address analysis2

IO value flow analysis3

0x20

MMIO Model

Value Constraints

magic

value

value

range

relevant

bits

0xffff - 0x8f00

Guides fuzzing inputs

And More …

DMA Model

• DevFuzz uses dynamic/static program analyses

• DMA buffer address/shape analysis

IRQ

• Simple model

• Generate IRQs using a timer

Model Generality and Reusability

• The generated Probe, MMIO, PIO Models reflect device-specific properties

• The models generated from one OS (Linux) can be reused to test device
drivers of another OS (FreeBSD or Windows)

Evaluation Summary

• Large-scale security evaluation

• Tested 150 Linux drivers

• Reused device models to test 25 FreeBSD and 16 Windows drivers

• Small-scale code coverage evaluation

• 17 network device drivers

• Compared with prior work: PrintFuzz [ISSTA’22] and DriFuzz [SEC’22]

• Compared with manually-developed QEMU device models (not shown in
this talk)

Security Evaluation

• For Linux: 75% (112/150) were successfully probed via symbolic execution

• Some unsupported features (e.g., IRQ during symbolic execution)

• Complex path constraints (e.g., checksum)

• For FreeBSD/Windows: About half Probe Models were reusable

• 72 Bugs (1 CVE) were reported (including FreeBSD/Windows cases)

• 56% (41/72) were patched to the mainstream

OS Tested Probed Bugs/Crash Patched

Linux 150 112 63 39

FreeBSD 25 14 8 2

Windows 16 8 1 0

All 191 134 72 41

Coverage Comparison with Prior Works

• PrintFuzz [ISSTA’22] uses
static analysis to pass
probing path constraints,
followed by fuzzing

• DriFuzz [SEC’22] uses
concolic execution

• DevFuzz achieves better

• Successful probing rate

• Code coverage

Geometric
Mean

Conclusion

• DevFuzz leverages symbolic execution, program analysis, and fuzzing to
enable testing device drivers

• without actual devices

• without manual device modeling

• without (input space) state explosion

• DevFuzz uncovered 72 bugs (41 patched)

• DevFuzz achieved higher code coverage than prior works

• DevFuzz were able to test a large set of device drivers without devices across
three different OSes (Linux, FreeBSD, and Windows

Q&A

	Slide 1: DEVFUZZ: Automatic Device Model-Guided Device Driver Fuzzing
	Slide 2: Device Driver Security
	Slide 3: Real World Examples
	Slide 4: Challenge 1: Large Device Input Space
	Slide 5: Challenge 2: Dynamic Probing
	Slide 6: Prior Work: Testing Device Drivers
	Slide 7: Our Approach
	Slide 8: Using Symbolic Execution for Probe Model
	Slide 9: Probe Model Example
	Slide 10: Using Program Analysis for MMIO/PIO Models
	Slide 11: And More …
	Slide 12: Evaluation Summary
	Slide 13: Security Evaluation
	Slide 14: Coverage Comparison with Prior Works
	Slide 15: Conclusion
	Slide 16: Q&A

